PharmLabs San Diego Certificate of Analysis

3421 Hancock St, Second Floor, San Diego, CA 92110 | License: C8-0000098-LIC ISO/IEC 17025:2017 Certification L17-427-1 | Accreditation #85368

Sample ID SD221008-017 (53362)		Matrix Flower (Inhalable Cannabis Good)
Tested for CBD Axis		
Sampled -	Received Oct 07, 2022	Reported Oct 12, 2022
Analuses executed CANX MWA		

Laboratory note: The estimated concentration of the unknown peak in the sample is 0.65% | Currently PharmLabs laboratory can not confirm an unidentified peak in your chromatogram due to interference (only with highly concentrated D8 products) from which we believe to be either (4)88-THC or 98-THC or 98-THC at this time there are no reference standards available for (4)88-THC. (4)88-THC is a different compound from the main (4)88-THC cannabinoid and, therefore, these two compounds may have different efficacies. Using the most advanced instruments and techniques available, the separation of (4)48-THC and 49-THC is problematic for the scientific community as a whole. PharmLabs believes the unidentified peak to be a combination of (4)48-THC with the majority, if not all, of the concentration being (4)48-THC. Total d8-THC is estimated to be 6.17%.

CANX - Cannabinoids Analysis

Analyzed Oct 12, 2022 | Instrument HLPC

Analyte	LOD mg/g	LOQ mg/g	Result %	Result mg/g
11-Hydroxy-Δ8-Tetrahydrocannabivarin (11-Hyd-Δ8-THCV)	0.013	0.041	ND	ND
Cannabidiorcin (CBDO)	0.002	0.007	ND	ND
Abnormal Cannabidiorcin (a-CBDO)	0.01	0.031	ND	ND
(+/-)-9B-hydroxu-Hexahydrocannibinol (9b-HHC)	0.012	0.036	ND	ND
11-Hydroxy-Δ8-Tetrahydrocannabinol (11-Hyd-Δ8-THC)	0.007	0.021	ND	ND
Cannabidiolic Acid (CBDA)	0.001	0.16	7.74	77.37
Cannabigerol Acid (CBGA)	0.001	0.16	0.39	3.94
Cannabigerol (CBG)	0.001	0.16	0.13	1.31
Cannabidiol (CBD)	0.001	0.16	5.85	58.53
1(S)-THD (s-THD)	0.013	0.041	ND	ND
1(R)-THD (r-THD)	0.025	0.075	ND	ND
Tetrahydrocannabivarin (THCV)	0.001	0.16	ND	ND
Δ8-tetrahydrocannabiyarin (Δ8-THCV)	0.021	0.064	ND	ND
Cannabidihexol (CBDH)	0.005	0.16	NT	NT
Tetrahydrocannabutol (Δ9-THCB)	0.013	0.038	ND	ND
Cannabinol (CBN)	0.001	0.16	ND	ND
Cannabidiphorol (CBDP)	0.015	0.047	NT	NT
exo-THC (exo-THC)	0.005	0.16	ND	ND
Tetrahydrocannabinol (Δ9-THC)	0.003	0.16	UI	UI
Δ8-tetrahydrocannabinol (Δ8-THC)	0.004	0.16	5.52	55.22
(6aR,9S)-Δ10-Tetrahydrocannabinol ((6aR,9S)-Δ10)	0.015	0.16	0.14	1.43
Hexahydrocannabinol (S Isomer) (9s-HHC)	0.017	0.16	ND	ND
(6aR,9R)-Δ10-Tetrahydrocannabinol ((6aR,9R)-Δ10)	0.007	0.16	2.49	24.90
Hexahydrocannabinol (R Isomer) (9r-HHC)	0.016	0.16	ND	ND
Tetrahydrocannabinolic Acid (THCA)	0.001	0.16	0.11	1.05
Δ9-Tetrahydrocannabihexol (Δ9-THCH)	0.024	0.071	ND	ND
Cannabinol Acetate (CBNO)	0.014	0.043	ND	ND
Δ9-Tetrahydrocannabiphorol (Δ9-THCP)	0.017	0.16	0.08	0.85
Δ8-Tetrahydrocannabiphorol (Δ8-THCP)	0.041	0.16	ND	ND
Cannabicitran (CBT)	0.005	0.16	NT	NT
Δ8-THC-O-acetate (Δ8-THCO)	0.076	0.16	ND	ND
9(S)-HHCP (s-HHCP)	0.031	0.094	ND	ND
Δ9-THC-O-acetate (Δ9-THCO)	0.066	0.16	ND	ND
9(R)-HHCP (r-HHCP)	0.026	0.079	ND	ND
9(S)-HHC-O-acetate (s-HHCO)	0.005	0.16	NT	NT
3-octyl-Δ8-Tetrahydrocannabinol (Δ8-THC-C8)	0.067	0.204	ND	ND
Δ9-THC methyl ether (Δ9-MeO-THC)			NT	NT
Total THC (THCa * 0.877 + Δ9THC)			0.09	0.92
Total THC + Δ8THC + Δ10THC (THCa * 0.877 + Δ9THC + Δ18THC + Δ10THC)			8.25	82.47
Total CBD (CBDa * 0.877 + CBD)			12.64	126.38
Total CBG (CBGa * 0.877 + CBG)			0.48	4.76
Total HHC (9r-HHC + 9s-HHC)			ND	ND
Total Cannabinoids			21.45	214.46

MWA - Moisture Content & Water Activity Analysis

Analyzed Oct 10, 2022 | Instrument Chilled-mirror Dewpoint and Capacitance | Method SOP-008

Triangues out 10, 2022 Trians of the triangues of the t									
Analyte	Result	Limit	Analyte	Result	Limit				
Moisture (Moi)	10.2 % Mw	13 % Mw	Water Activity (WA)	0.66 a _w	0.85 a _w				

UI Not Identified
ND Not Detected
N/A Not Applicable
NT Not Reported
LOD Limit of Detection
LOQ Limit of Quantification
<LOQ Detected
JULQL Above upper limit of linearity
CFU/g Colonyl porming Units per 1 gram
TNTC Too Numerous to Count

Authorized Signature

Brandon Starr

